a close up of a network with wires connected to it

Queuing Theory and Modeling

Unit I: Probability and Random Variables

  • Fundamentals of Probability

    • Axioms of Probability

    • Conditional Probability

    • Baye's Theorem

  • Random Variables

    • Discrete and Continuous Random Variables

    • Moments and Moment Generating Functions

  • Probability Distributions

    • Binomial Distribution

    • Poisson Distribution

    • Geometric Distribution

    • Uniform Distribution

    • Exponential Distribution

    • Normal Distribution

Unit II: Two-Dimensional Random Variables

  • Joint Distributions

    • Marginal and Conditional Distributions

  • Covariance and Correlation

  • Linear Regression

  • Transformation of Random Variables

  • Central Limit Theorem

    • For independent and identically distributed random variables

Unit III: Random Processes

  • Classification of Random Processes

  • Stationary Processes

  • Markov Processes

  • Poisson Processes

  • Discrete Parameter Markov Chain

    • Chapman-Kolmogorov Equations

    • Limiting Distributions

Unit IV: Queueing Models

  • Markovian Queues

    • Birth and Death Processes

  • Queueing Models

    • Single and Multiple Server Queueing Models

    • Little's Formula

  • Queues with Special Conditions

    • Queues with Finite Waiting Rooms

    • Queues with Impatient Customers: Balking and Reneging

Unit V: Advanced Queueing Models

  • Finite Source Models

  • M/G/1 Queue

    • Pollaczek-Khinchin Formula

  • Special Cases

    • M/D/1 and M/EK/1 Queues

  • Series Queues

  • Open Jackson Networks